MILD TRAUMATIC BRAIN INJURIES IN CHILDHOOD ARE ASSOCIATED WITH **ALTERATIONS IN MYELIN SENSITIVE MRI MEASURES IN FEMALES**

UNIVERSITY OF **FORONTO**

⁴Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health

BACKGROUND

- As maturation of the brain continues throughout development, there is risk of interference from mild traumatic brain injury (mTBI).
- An mTBI can cause shearing of axons and may alter developmental myelination.
- Altered white matter maturation could impact cognitive processes that are under development.

OBJECTIVE

- 1. Investigate differences in white matter and cortical myelin development between children with a history of mTBI and a population sample using myelin sensitive imaging in: Cortical Gray Matter, Superficial White Matter, Deep White Matter
- 2. Investigate the relationship between neurite density and cognitive outcomes

METHODS

ADOLESCENT BRAIN COGNITIVE DEVELOPMENT STUDY

• Publicly available dataset of children ages 9 to 10 years old, including children with a history of mTBI, who had diffusion weighted images.

RESTRICTION SPECTRUM IMAGING

• Multi-shell diffusion weighted imaging technique, sensitive to gray and white matter microstructure

• Neurite density is sensitive to myelinated axons

STATISTICAL ANALYSES

Objective 1

- Group-wise analyses to investigate relationship between group, sex, age and their interactions
- Race/ethnicity, total combined family income, and pubertal status included as covariates

Objective 2

- Principal component analysis (PCA) was performed on neurite density values in ROI to extract a collection of ROI (PCs) that explain the largest variance in the data
- PCs with $\lambda > 1$ were used to investigate the relationship with cognitive outcomes (Flanker Inhibitory Control and Attention Test & Pattern Comparison Processing Speed Test)

Eman Nishat^{1,2}, Sonja Stojanovski^{1,2}, Stephanie H Ameis^{3,4}, Anne L Wheeler^{1,2}

¹Department of Physiology, Faculty of Medicine, University of Toronto

²Neurosciences and Mental Health, The Hospital for Sick Children

³Department of Psychiatry, Faculty of Medicine, University of Toronto

RESULTS

OBJECTIVE 1: GROUP COMPARISONS

Table 1. Sex and age of sample

	mTBI	Со
Sex F/M	133 (39.6%)/203 (60.4%)	3524 (47.8%
Mean Age in Months (SD)	120 (7.47)	119

Table 2. *P* values for the interaction between group and sex and for female mTBI compared to female control.

	Superficial White Matter	Deep White Matter
Group x Sex	0.004 **	0.017 *
F mTBI vs Control	0.001 **	0.027 *

- All imaging measures demonstrated robust relationships with age reflecting maturation of brain microstructure.
- Comparisons between children with and without a history of mTBI revealed significantly higher neurite density (more myelin) in deep and superficial white matter in females with mTBI.
- No group differences were observed in cortical neurite density.

CONCLUSION

- mTBI in childhood may accelerate white matter myelination in females but does not affect cortical myelin.
- This sex specific effect on the brain may be associated with enhanced vulnerability to persistent symptoms after concussion in females.
- Association between higher neurite density and lower scores on the Pattern Comparison Processing Speed Test suggests that altered myelin development after a childhood mTBI may influence cognitive development.

OBJECTIVE 2: RELATIONSHIP WITH COGNITIVE OUTCOMES

• PCA of superficial white matter ROI revealed 9 PCs with $\lambda > 1$

ntrols

- 5)/3843 (52.2%) (7.40)
- Variable loadings on PC3 included: Bilateral Orbital Frontal Cortex, L Parahippocampal Gyrus, L, Inferior Frontal Gyrus, Bilateral Temporal Gyrus, L Insula
- Higher neurite density in these regions is correlated with poorer processing speed in females

REFERENCES

Armstrong R, et al. (2016). White Matter Involvement After TBI: Clues to Axon And Myelin Repair Capacity. Experimental Neurology 275, 328-333. Deoni SCL, et al. (2015). Cortical Maturation And Myelination In Healthy Toddlers And Young Children. Neuroimage 115, 147–161. Gordon EM, et al. (2019). MRI-Based Measures Of Intracortical Myelin Are Sensitive To A History Of TBI And Are Associated With Functional Connectivity. NeuroImage 200, 199-209.

Hagler, D. J., et al. (2019). Image Processing and Analysis Methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091. Varriano B, et al. (2018). Age, Gender and Mechanism of Injury Interactions in Post-Concussion Syndrome. Can J Neurol Sci 45, :636-642. White NS, et al. (2013). Probing Tissue Microstructure with Restriction Spectrum Imaging: Histological and Theoretical Validation. Hum Brain Mapp, 34, 327-346.

CONTACT INFORMATION

Eman Nishat eman.nishat@sickkids.ca

